Prediction of pH-Dependent Aqueous Solubility of Druglike Molecules

نویسندگان

  • Niclas Tue Hansen
  • Irene Kouskoumvekaki
  • Flemming Steen Jørgensen
  • Søren Brunak
  • Svava Ósk Jónsdóttir
چکیده

In the present work, the Henderson-Hasselbalch (HH) equation has been employed for the development of a tool for the prediction of pH-dependent aqueous solubility of drugs and drug candidates. A new prediction method for the intrinsic solubility was developed, based on artificial neural networks that have been trained on a druglike PHYSPROP subset of 4548 compounds. For the prediction of acid/base dissociation coefficients, the commercial tool Marvin has been used, following validation on a data set of 467 molecules from the PHYSPROP database. The best performing network for intrinsic solubility predictions has a cross-validated root mean square error (RMSE) of 0.70 log S-units, while the Marvin pKa plug-in has an RMSE of 0.71 pH-units. A data set of 27 drugs with experimentally determined pH-solubility curves was assembled from the literature for the validation of the combined pH-dependent model, giving a mean RMSE of 0.79 log S-units. Finally, the combined model has been applied on profiling the solubility space at low pH of five large vendor libraries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Reliable Aqueous Solubility Models and Their Application in Druglike Analysis

In this work, two reliable aqueous solubility models, ASMS (aqueous solubility based on molecular surface) and ASMS-LOGP (aqueous solubility based on molecular surface using ClogP as a descriptor), were constructed by using atom type classified solvent accessible surface areas and several molecular descriptors for a diverse data set of 1708 molecules. For ASMS (without using ClogP as a descript...

متن کامل

Prediction of aqueous solubility of druglike organic compounds using partial least squares, backpropagation network and support vector machine

Aqueous solubility of drug compounds plays a very important role in drug research and development. In this study, we have collected 225 diverse druglike molecules with accurate aqueous solubility. Three commonly used methods, namely partial least squares (PLS), back-propagation network (BPN) and support vector regression (SVR), were employed to model quantitative structure–property relationship...

متن کامل

In silico prediction of aqueous solubility: a multimodel protocol based on chemical similarity.

Aqueous solubility is one of the most important ADMET properties to assess and to optimize during the drug discovery process. At present, accurate prediction of solubility remains very challenging and there is an important need of independent benchmarking of the existing in silico models such as to suggest solutions for their improvement. In this study, we developed a new protocol for improved ...

متن کامل

Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure-property relationship (QSPR) models. We also develop machine learning models where the theoretical e...

متن کامل

Can human experts predict solubility better than computers?

In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside this, we implement 10 typical machine learning algorithms on the same dataset. The best algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2006